
P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2003VOLUME 91, NUMBER 8
Lower Bound for Electron Spin Entanglement from Beam Splitter Current Correlations
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We determine a lower bound for the entanglement of formation of pairs of electron spins injected into
a mesoscopic conductor. The bound can be expressed in terms of experimentally accessible quantities,
the zero-frequency current correlators (shot noise power or cross correlators) after transmission through
an electronic beam splitter and can be used to gain information about the entanglement from
experiment. Spin relaxation (T1 processes) and decoherence (T2) during the ballistic coherent trans-
mission of carriers are taken into account within Bloch theory. A variable inhomogeneous magnetic
field gives rise to a useful lower bound for the entanglement of arbitrary states. The decrease in
entanglement due to thermally mixed states is studied. Both the entanglement of the output of a source
(entangler) and T1;2 can be determined from current correlators.
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which can be used for Bell-state analysis [8]. The ideal BS for the proposed setup does not give rise to
Quantum nonlocality has been an intriguing issue
since the early days of quantum mechanics [1].
Nonlocal effects can come into play when a quantum sys-
tem is composed of at least two subsystems (A and B)
which are spatially separated. Despite their simplicity, the
Bell states of two distant quantum two-state subsystems

j��i �
1���
2
p �j"#i � j#"i	; (1)

j��i �
1���
2
p �j""i � j##i	; (2)

exhibit the essential phenomenology of quantum nonlo-
cality (e.g., they violate Bell’s inequalities [2]) thus pro-
viding an ideal testing ground for quantum nonlocality.
Here, we represent the two-state systems as spins 1/2 with
basis states ‘‘spin up’’ j"i and ‘‘spin down’’ j#iwith respect
to an arbitrary fixed direction in space.

With the development of quantum information theory
[3], and, in particular, with quantum communication, it
has become clear that EPR pairs can also play the role of a
resource for operations that are impossible with purely
classical means. In this context, two-state systems are
referred to as quantum bits (qubits), and quantum non-
locality is related to the concept of entanglement (defined
below). A number of quantum information processes —
quantum teleportation [4], quantum key distribution [5],
quantum dense coding [6], etc.— have been successfully
implemented using pairs of photons with entangled polar-
izations, i.e., in states such as Eqs. (1) and (2). Photons
have the advantage of being easily moved from one place
to another, allowing for experiments involving spacelike
separations between detection events [2]. It is known that
momentum-entangled photon pairs exhibit interference
effects in the average intensity (particle number) after
transmission through a beam splitter (BS) [7], an effect
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More recently, there has been increasing interest in the
use of electron spins in a solid-state environment for spin-
based electronics [9] and as qubits for quantum comput-
ing [10]. Subsequently, quantum communication on a
mesoscopic scale, typically micrometers in semiconduc-
tor structures, was proposed [11]. Rather than achieving
spacelike separation between detection events on two
sites (this would require subpicosecond detection), the
idea here is to use quantum entanglement between parts
of a coherently operating solid-state device (in the most
extreme case, a quantum computer). It is then relevant to
study the transport of spin-entangled electrons in a
many-electron system and possible means of entangle-
ment detection. Two-particle interference at a BS com-
bined with the measurement of current fluctuations [12]
(in general, the full counting statistics [13]), going beyond
the average current, was identified as a detector for
entanglement.

In this Letter, we go one step further, providing a
lower bound for the amount E of spin entanglement
carried by individual pairs of electrons, related to the
zero-frequency current correlators when measured in a
BS setup (Fig. 1, inset) by injecting the electrons sepa-
rately into the two ingoing leads (1 and 2) and measuring
either the autocorrelator S�� in one of the outgoing leads
(� � 3; 4) or the cross correlator S34. Our result therefore
relates experimentally accessible quantities with a mea-
sure for entanglement, the entanglement of formation E.
Knowing E is important since it quantifies the usefulness
of a bipartite state for quantum communication. We as-
sume that the scattering region is smaller than both the
coherence length and the mean free path, allowing
for ballistic and coherent transport. In the following, T
denotes the transmittivity of the BS, i.e., the probabil-
ity to be scattered from lead 1 to lead 4 (or from 2 to 3).
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FIG. 1 (color online). Inset: Proposed setup with two-
electron scattering at a beam splitter (BS) with transmittivity
T. Electrons are injected pairwise from the entangler (E) into
the BS contacts 1,2. The mean current I�hI�i and one of the
correlators S�� are measured at the contacts �;��3;4.
Plot: Entanglement of formation E of the electron spins ver-
sus singlet fidelity F and the reduced correlator f �
S33=2eIT�1� T	. The curve illustrates the exact relation for
Werner states. For general states, the curve is a lower bound for
E; allowed values for E and f (or F) are above the curve.
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backscattering (e.g., from lead 1 back into 1, or from 1
into 2, etc.). We also analyze the effect of such back-
scattering processes, as they give rise to background
shot noise unrelated to entanglement. During transport,
the spins are subject to decoherence and relaxation, e.g.,
caused by magnetic impurities, nuclear spins, or the
spin-orbit coupling (see [14] for a review). We include
these effects within a Bloch equation formalism [15].
Comparison between our theory and experiment will
(i) test proposed entanglers [16–22] and (ii) determine
spin relaxation (T1) and decoherence (T2) times. The
materials and structures required for applying our theory,
although at the forefront of current capabilities, appear to
be feasible. The largest efforts seem to be necessary to
realize the electron spin entangler [12] for which there
exists a number of ideas, using normal [16,17] — or
carbon-nanotube — superconductor junctions [18–20],
or single [21], or coupled quantum dots [12,22]. The
electronic BS and the measurement of BS current corre-
lators have been demonstrated in a GaAs/AlGaAs hetero-
structure [23]. Coherent transport of spins over more than
100	m in GaAs has been observed [24].

Traditionally, current correlations, and, in particular,
shot noise, have been used to gain information about a
scatterer beyond its conductance [25]. Here, we use a
known scatterer (the BS) to gain information about the
quantum state of the scattered particles. The correlation
function between the currents I��t	 and I��t	 in two leads
�;� � 1; . . . ; 4 of the BS is defined as

S���!	 � lim
�!1

h�
�

Z �

0
dt ei!t ReTr��I��t	�I��0	; (3)
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where �I� � I� � hI�i, hI�i � Tr�I�	, � is the density
of states in the leads, and  is the density matrix of the
injected electron pair (below, we suppress the orbital part
of , being symmetric for j��i and antisymmetric for all
other Bell states; for Coulomb effects, see [12]). Writing
 in the singlet-triplet basis,  � Fj��ih��j �
G0j��ih��j �

P
i�";#Gijiiihiij � �, where � denotes

off-diagonal terms, e.g., j��ih""j, and S���S

���!�0	,

we arrive at S�� � FSj��i�� �G0S
j��i
�� �

P
i�";#GiS

jiii
��,

where Sj�i�� � Sj�ih�j�� . The off-diagonal terms in � do
not enter S�� because the operators �I��t	 conserve total
spin. The coefficients F, G0, G", and G# depend on the
entangler [16–22]; it is the purpose of the proposed setup
to gain information about them in order to determine
the entanglement of . Using the standard scattering
approach [25], we have found earlier [12] that the singlet
state j��i gives rise to enhanced shot noise (and cross
correlators) at zero temperature, Sj��i33 ��Sj��i34 �
2eIT�1�T	f, with the reduced correlator f � 2, as com-
pared to the ‘‘classical’’ Poissonian value f � 1 [26]. The
average currents are given by I � hI3i � hI4i � e=h�.
All triplet states are noiseless, Sj��i�� � Sj""i�� � Sj##i�� � 0
(�;� � 3; 4). Both the auto correlations and cross corre-
lations are only due to the singlet component of the
incident two-particle state,

S33 � �S34 � FSj��i33 � 2eIT�1� T	f; f � 2F:

(4)

Including backscattering with probability RB, we find

S33 � 2eI� 2F�1� RB	T�1� T	 � RB=2 ; (5)

S34 � �2eI 2F�1� RB	T�1� T	; (6)

where I� �e=h�	�1�RB	. Since f0 � S34=2eIT�1�T	 �
2F�1�RB	 � f� 2F and E�f	 is monotonic (see below),
we obtain a useful lower bound on E even for unknown
RB as long as RB < 1=2. This does not hold for S33.
Alternatively, one can independently determine RB by
measuring the noise using Fermi leads [23].

The entanglement of a bipartite pure state j i 2
H A �H B is given by the von Neumann entropy
SN�j i	 � �TrB�B log�B ( log in base 2) of �B �
TrAj ih j, where 0� SN � 1, SN�j��i	 � SN�j��i	 � 1,
and SN�j i	 � 0, j i � j iA � j iB. Physically, if
SN�j i	 ’ N=M then M � N copies of j i are suffi-
cient to perform, e.g., quantum teleportation of N qubits
for N;M� 1 (similarly for other quantum com-
munication protocols). Generally, for a bipartite mixed
state  the entanglement of formation [27] is
E�	 � minf�jii;pi	g2E�	

P
i piSN�jii	, where E�	 �

f�jii; pi	j
P
ipijiihij � g, i.e., the least expected

entanglement of any ensemble of pure states realizing
. A state with E > 0 (E � 1) is (maximally) entangled,
and neither local operations nor classical communication
(LOCC) between A and B can increase E.
087903-2
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For arbitrary , E�	 is not a function of only the
singlet fidelity F � h��jj��i. However, E�	 � E�F	
for the Werner states [28]

�F � Fj��ih��j �
1� F
3

�
j��ih��j �

X
i��

j�iih�ij

�
;

(7)

the unique rotationally invariant states with singlet
fidelity F. It is known [27] that E�F	 � E��F	 �
H2�1=2�

��������������������
F�1� F	

p
 if 1=2<F � 1 and E�F	 �

E��F	 � 0 if 0 � F < 1=2, with H2�x	 � �x logx�
�1� x	 log�1� x	. With Eq. (4), we can express E��F	
in terms of the reduced correlator f (Fig. 1).

We generalize this result to arbitrary mixed states  of
two spins (qubits). Any state  can be transformed into
�F with F � h��jj��i by a random bipartite rotation
[27,29], i.e., by applying U �U with a random U 2
SU�2	. Since this operation involves only LOCC,

E�F	 � E�	: (8)

The entanglement of formation E�F	 of the correspond-
ing Werner state therefore provides a lower bound on E�	
087903-3
(Fig. 1). Thus, a noise signal f � 2F > 1 in the BS setup
can be interpreted as a sign of entanglement, E�F	 > 0,
between the spins injected into leads 1 and 2 [30].

We now include relaxation and decoherence into our
analysis. At time t � 0, we start with a spin singlet (upper
sign) or triplet (lower sign) state

�0	 � j��ih��j: (9)

We describe the dynamics of �t	 in a field B k ẑz and
in the presence of decoherence and relaxation within
a single-spin Bloch equation for the polarization
P � �h&xi; h&yi; h&zi	,

_PP � P� h� R�P� ~PP	 � ���P� ~PP	; (10)

with h&ii � Tr�&i�	, h � g	BB � �0; 0; h	, ~PP � �0; 0; ~PP	
(note that ~PP� h � 0), and the relaxation matrix [31]
Rij � �ijRi with R1 � R2 � T�12 and R3 � T�11 . Solv-
ing Eq. (10), we obtain P�t	 � e��tP�0	 � �1� e��t	~PP,
or, in terms of the single-spin density matrix,

��t	 � �P0 � P�t	 � �=2 � �h�t	���0	; (11)

with the superoperator [a�t	 � 1� e�t=T1] [32]
�h�t	�� �

"
1
2 ��"" � �##	�1� a�t	 ~PP � 1

2 ��"" � �##	e�t=T1 e�t=T2�iht�"#
e�t=T2�iht�#"

1
2 ��"" � �##	�1� a�t	 ~PP � 1

2 ��"" � �##	e�t=T1

#
; (12)
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FIG. 2. Homogeneous field �h � 0 and ~PP � 1. (a) f of the
singlet state j��i after ballistic transmission through a BS as a
function of T2=t0, where t0 � L=vF. Different curves corre-
spond to different values of the relaxation time T1=t0 (plotted
only for T2 � 2T1). (b) f for a triplet state j��i. Since f � 1,
the lower bound on E is zero, i.e., determination of triplet
entanglement is impossible at �h � 0. (c) Lower bound on E.
with �ij � hij�jji and �i; j �"; #	. We apply �h�t0	 to both
spins individually,

�t0	 � ��h1�t0	 ��h2�t0	��0	; (13)

where hi is the field at electron i and t0 � L=vF is the
fixed ballistic transmission time (L �
length of ingoing leads, vF � Fermi velocity). We are
describing a stationary state in the BS (! � 0), and there
is no time dependence in �t0	, t0 being fixed. For a
typical GaAs structure with L  1	m and vF  
104–105 m=s, we obtain t0  10–100 ps [26]. With typical
decoherence times up to T2  100 ns–1	s found in GaAs
we obtain ratios T2=t0 up to 103–105 (typically, T1 � T2).
Using Eq. (4) and F�t0	 � h��j�t0	j��i we obtain

f�t0	 � � e�2t0=T2 cos��h t0	 �
1

2
�1� e�2t0=T1	

�
1

2
�1� e�t0=T1	2 ~PP2; (14)

where �h � h1 � h2. If the decoherence times T�1;2	2 of
the two electrons are different, then T2=2 in Eq. (14) be-
comes TEPR2 � �1=T�1	2 � 1=T�2	2 

�1. We define TEPR1 simi-
larly if ~PP � 0. However, if ~PP � 1, then exp��t0=T1	 is
replaced by exp��t0=T

�1	
1  � exp��t0=T

�2	
1 .

A homogeneous field, �h�0, does not affect f. For
slow relaxation, T1 � t0, we find f�t0	 � 1� e�2t0=T2
[see Fig. 2(a)]. For unentangled triplet states, �0	 �
j""ih""j; j##ih##j, we find f�1=2 for all T1, T2, and ~PP
[Fig. 2(b)]. An inhomogeneous field �h � 0 (or, equiva-
lently, a local controllable Rashba spin-orbit coupling
[33]) has the effect of continuously rotating singlets into
triplets and vice versa (Fig. 3). This provides a lower
bound of the triplet entanglement, �0	 � j��ih��j,
which is as tight as Eq. (8) for the singlet,
087903-3
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FIG. 3. (a) Reduced current correlator f versus field inhomo-
geneity �h� h1�h2 (units of &h=t0g	B, t0�L=vF, g�
g factor, 	B � Bohr magneton) for injected singlet and ~PP � 1.
Solid lines represent T1 � t0 and T2 � t0; 3t0; 10t0;1, gray
dashed lines T1 � 3t0 and T2 � t0; 3t0. For triplets, the plot
is phase shifted by /, providing tight lower bounds at �h � /.
Tight bounds for any input state are obtained by varying the
direction of �h. (b) Plot of f for a thermally mixed initial state
versus T2=t0 for T1 � t0, ~PP � 1. Various curves correspond to
kBT=J � 0; 0:25; 0:33; 0:5; 1, where J and T denote the ex-
change energy and temperature during state preparation.
Inset: The maximal f (at T1; T2 � t0) versus kBT=J.
Entanglement is absent (f � 1, E � 0) above Tc � 0:91 J=kB.
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E�	 � max
�h
E�f��h	=2; (15)

where f��h	 is the measured noise and E�F	 is the en-
tanglement of the Werner state �F (Fig. 1). If a field
inhomogeneity �h can be created pointing in arbitrary
directions in space, then Eq. (15) is a tight lower bound
for any injected entangled state. In particular, each maxi-
mally entangled state j�i will be detected in this way,
since there exists a u � exp��i�h � �	 2 SU�2	 such that
uy � uj�i � j��i. This rotation can also be done unilat-
erally [33], i.e., there is a v 2 SU�2	 with v � 1j�i �
j��i. The field gradient �h required to perform a /
rotation in GaAs (g � �0:44) is of the order of 1 T, but
the same rotation can be obtained from the Rashba effect
on a length scale of about 70 nm [26].

Finally, we study the case where �0	 is mixed, being
prepared at a temperature T comparable to the energy
splitting between spin states, typically (if the Zeeman
effect is negligible) the exchange energy J, i.e., the
singlet-triplet splitting. In this case, �0	 � �F with
F � �1� 3e�J=kBT	�1 where kB is Boltzmann’s constant.
We show only the resulting f for T1 � t0 here (the full
expression will be reported elsewhere [34]), f�t0	 �
�1 � e�2t0=T2 � e�J=kBT�1 � e�2t0=T2	=�1 � 3e�J=kBT	,
which is the statistical mixture of Eq. (14) for the
singlet and triplet with the appropriate Boltzmann
weights [Fig. 3(b)]. Above the critical temperature Tc �
0:91 J=kB there is no entanglement even for T1; T2 ! 1.

Note that intensity correlators at an optical BS (half-
silvered mirror) determine a lower bound for the entan-
glement of formation between the polarization of photons
in the same way as for electrons in a conductor.
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